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ARTICLE

Association Mapping via Regularized Regression Analysis of
Single-Nucleotide–Polymorphism Haplotypes in Variable-Sized
Sliding Windows
Yi Li, Wing-Kin Sung, and Jian Jun Liu

Large-scale haplotype association analysis, especially at the whole-genome level, is still a very challenging task without
an optimal solution. In this study, we propose a new approach for haplotype association analysis that is based on a
variable-sized sliding-window framework and employs regularized regression analysis to tackle the problem of multiple
degrees of freedom in the haplotype test. Our method can handle a large number of haplotypes in association analyses
more efficiently and effectively than do currently available approaches. We implement a procedure in which the maximum
size of a sliding window is determined by local haplotype diversity and sample size, an attractive feature for large-scale
haplotype analyses, such as a whole-genome scan, in which linkage disequilibrium patterns are expected to vary widely.
We compare the performance of our method with that of three other methods—a test based on a single-nucleotide
polymorphism, a cladistic analysis of haplotypes, and variable-length Markov chains—with use of both simulated and
experimental data. By analyzing data sets simulated under different disease models, we demonstrate that our method
consistently outperforms the other three methods, especially when the region under study has high haplotype diversity.
Built on the regression analysis framework, our method can incorporate other risk-factor information into haplotype-
based association analysis, which is becoming an increasingly necessary step for studying common disorders to which
both genetic and environmental risk factors contribute.
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Rapid improvements in high-throughput genotyping
technologies have greatly reduced the cost of genomewide
analyses and are resulting in a boom of large-scale genetic
association studies of common disorders. Involving either
a group of candidate genes or the whole genome, these
studies employ single SNP-based linkage disequilibrium
(LD) mapping to systematically evaluate the role of com-
mon genetic variants in the risk of developing various
complex disorders. By approaching comprehensive cov-
erage of common genetic variants, these studies have a
statistical power for detecting genetic risk factors with
moderate effects that is much improved over that of pre-
vious studies.1 Meanwhile, the comprehensive coverage of
common genetic variants has also greatly increased the
number of polymorphisms that need to be tested within
a study and thus poses a great challenge for statistical
analysis. LD-based association analysis can be performed
by analyzing either individual SNPs or multiple-SNP hap-
lotypes. It is still debatable which of the two methods is
more powerful for detecting common risk factors, and it
is likely that one method will perform better than the
other under certain disease models and certain LD pat-
terns.2–8 In practice, both single-SNP and multiple-SNP
haplotype analyses are performed in genetic association
studies.

Strategies for performing haplotype analyses are still the
subject of active debate and research. One of the impor-
tant issues is how many adjacent SNPs should be included

simultaneously in a particular haplotype analysis. Early
suggestions were to perform the haplotype analysis within
regions of high LD, often referred to as “LD blocks,” where
most of the genetic variation can be captured by a limited
number of haplotypes.9 To undertake such an analysis, LD
blocks need to be defined before haplotype association
tests are performed within each predefined LD block. Al-
though this approach is simple and offers an appealing
concept, the definition of haplotype blocks can be prob-
lematic. Several different criteria have been proposed,9–12

but it is still unclear which one is the most suitable. Fre-
quently, the boundaries of LD blocks are not obvious. In
addition, performance of haplotype analysis within pre-
determined LD blocks fails to consider possible correla-
tions among LD blocks. Furthermore, it is almost inevi-
table that LD block–based haplotype analysis will result
in “orphan” SNPs that fall outside any predetermined LD
blocks and are therefore excluded from haplotype anal-
ysis. In such instances, the full information on genetic
variability within a region will not be used in the hap-
lotype analysis. Hence, the use of LD blocks as the fun-
damental units of association testing may not be the most
efficient strategy for haplotype analyses.13

Another strategy for performing haplotype analyses is
based on the sliding-window framework, in which several
neighboring SNPs, together called a “window,” are in-
cluded in a haplotype analysis, and such a window-based
analysis is performed in a stepwise fashion across the re-
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gion under study. Initial approaches to sliding window–
based haplotype analyses employed windows of uniform
size.14–16 However, the determination of the fixed window
size in such methods can be cause for concern. In theory,
the optimal window size should be the one that results in
a haplotype or haplotypes that maintain the highest LD
with the genetic risk variant or variants to be detected.
The optimal window size, therefore, should be influenced
by the underlying LD pattern. Use of a fixed window size
becomes more problematic when haplotype analyses are
performed over a large genomic region or over the whole
genome, where LD patterns are surely variable across the
region. Therefore, it is impossible to predefine a single
optimal window size for a sliding-window analysis of
large-scale data.

Alternatively, sliding window–based haplotype analyses
can be performed without fixing the window size. In this
implementation, a range of window sizes are considered
in the haplotype analysis. By analyzing both simulated
and experimental data, Lin et al.17 argued that an ex-
haustive search of all the possible windows of SNPs at the
genome level is not only computationally practical but
also statistically sufficient for detection of common or rare
genetic-risk alleles. However, such an exhaustive search
followed by a massive correction for multiple testing in-
evitably caused a loss of power. In addition, given a fixed
number of samples, the number of haplotype tests that
can be afforded should be limited; hence, it is more rea-
sonable that the maximum window size be determined
on the basis of the local LD pattern and the available
sample size, rather than being as large as the size of a big
region (e.g., a chromosome) in the genome scan. Recently,
Browning used variable-length Markov chains for associ-
ation mapping,18 attempting to adapt haplotype analyses
to the local LD pattern. The adaptation is made by infer-
ring the structure of the graph that represents the variable-
length Markov chains, and each merging edge of the in-
ferred graph represents a cluster of haplotypes that will
be tested for association with the disease. The number of
tests is decreased if the inferred graph is parsimoni-
ous. During its merging (clustering) process, Browning’s
method considers all the haplotypes of all lengths for a
fixed set of SNPs in a region and uses a modified merging
algorithm of Ron et al.19 to ensure that low-frequency hap-
lotypes are continually merged and that the inferred graph
is parsimonious. As a result, when the region under study
exhibits a complex LD pattern (e.g., because of a high
recombination rate) and thus contains many unique hap-
lotypes (each with low frequency), the merging process of
Browning’s method will tend to group a large number of
unique haplotypes into a small number of haplotype clus-
ters. The inferred graph, therefore, will contain a limited
number of merging edges for association tests. Conse-
quently, each resulting merging edge is likely to have high
haplotype diversity and to fail to capture the true asso-
ciation between particular haplotype(s) and underlying
disease risk allele(s).

Besides the issue of the number of SNPs to be considered
in haplotype analyses, another challenge is how to handle
the large number of haplotypes in association tests. Hap-
lotype analyses are generally performed in two distinct
ways. One is to test each haplotype by performing a series
of 1-df tests, followed by a correction for multiple testing,
usually Bonferroni correction. The other way is to analyze
the whole set of haplotypes by performing a single mul-
tiple-df global test. However, for both approaches, the
power of detection is seriously weakened because of either
the massive correction for a large number of tests or the
many degrees of freedom. Several approaches have been
proposed to tackle this problem. One commonly em-
ployed approach is to ignore rare haplotypes by grouping
them into a single pseudohaplotype and hence to reduce
the total number of haplotypes to be tested. For this strat-
egy to be applied, a frequency threshold to define rare
haplotypes needs to be specified in advance, which is
sometimes tricky to do in reality. Moreover, when all the
rare haplotypes are lumped together, the risk association
with any rare haplotype(s) is likely to be missed, and even
if it is not missed, it is impossible to interpret the positive
association of this heterogeneous group of rare haplotypes
with the disease. Seltman et al.20 suggested an alternative
approach that involved performing a series of 1-df tests
guided by the cladogram, followed by Bonferroni correc-
tion. However, the sequence of the tests suggested cannot
be optimal in all cases. For example, in their 14 simulated
models, multiple-df global tests took the lead in 7 models,
whereas the sequential tests took the lead in 6 models. So,
the improvement of the detection power offered by this
approach is marginal. A third approach is to cluster hap-
lotypes by their similarity. For example, Durrant et al.21

designed an allele frequency–based haplotype-similarity
measure, used standard hierarchical clustering to group
haplotypes, and accepted the haplotype partition with the
smallest association P value. The haplotype clustering in
such an approach is independent of disease status, which
creates an opportunity to increase the detection power if
disease status is used to guide the haplotype grouping.
Another appealing approach, called the “penalized log-
likelihood method,” is to force similar haplotypes to have
similar estimated effects by imposing a penalty on similar
haplotypes with different estimated coefficients.22 The ob-
jective function to minimize for estimating the coeffi-
cients is the sum of the squared error plus a weighted
penalty. To apply this method, a suitable haplotype sim-
ilarity measure has to be selected from multiple existing
ones. Moreover, the slow estimation of coefficients makes
it time consuming to apply the cross-validation method
for determining the weight that makes a trade-off between
the sum of squared error and the penalty.

In this article, we propose a new method for performing
variable-sized sliding window–based haplotype analysis.
First, at each testing position (i.e., the beginning position
of a sliding window), we determined the maximum win-
dow size for the haplotype analysis on the basis of local
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haplotype diversity as well as sample size. Subsequently,
a joint analysis of all the haplotypes of different lengths
(up to the maximum window size) at the same beginning
position was performed using a regularized regression
method. Guided by the disease status, the regularized re-
gression shrinks the effects of noninformative haplotypes
to zero, and hence the effective degrees of freedom of the
regularized regression model is greatly reduced. Since the
joint analysis in our method not only takes account of
the dependency among haplotypes but also makes effec-
tive use of their complementariness, it is more efficient in
managing a large number of haplotypes and thus is more
powerful in association detection than are approaches em-
ploying either a large number of single-haplotype–based
tests or a conventional global test of all the haplotypes.
We evaluated the performance of our method, in terms
of the power to detect the presence of a genetic risk allele,
by comparing it with the performance of a single SNP–
based test, cladistic analysis of haplotypes21 in a fixed-sized
sliding-window framework, and an association-mapping
method based on variable-length Markov chains, which
is in the haplotype-clustering framework and makes use
of local LD pattern.18 We have demonstrated that our cur-
rent method provides better performance than these three
methods.

Methods

For simplicity of exposition, we assume that the genetic associ-
ation study is performed for a case-control analysis of phase-
known haplotype data (see the “Discussion” section for how to
generalize to phase-unknown genotype data). Consider M unre-
lated case and control chromosomes, typed for L SNPs in a region.
Denote , and , as the allele con-X � {1,2} i p 1, … ,M j p 1, … ,Lij

figuration at SNP j in chromosome i, and denote ,y � {0,1} i pi

, as the disease status of chromosome i.1, … ,M
In the sliding-window framework, a window is a set of neigh-

boring SNPs. A window denotes the set of SNPss� {s,s �l

. The haplotype in chromosome i, composed of1, … ,s � l � 1}
SNPs in a window , is denoted . The set of distinct haplo-s� X sl i�l

types in a window is defined as . A variable-s� {X Fi p 1, … ,M}sl i�l

sized window that begins with SNP s, denoted as , is a collectionsQ

of windows , with l ranging from 2 to , where is the largests� k kl s s

k such that . In other words, thekF ∪ {X Fi p 1, … ,M}F � M/2slp2 i�l

maximum window size in our variable-sized window is based on
the local haplotype diversity and the available sample size, and
it is defined in such a way that the number of distinct haplotypes
in a variable-sized window is, at most, half the number of ob-
served chromosomes. We assume that n is the number of inde-
pendent variables (i.e., unique haplotypes) that are included in
the regression model, and m is the number of samples we are
given. To accurately estimate the coefficients in the regression
model, n should be upper bounded by a function of m. For an
ordinary regression analysis that maximizes the likelihood (i.e.,
minimizes the sum of squared error), a rule of thumb for the ratio
n:m is . For the -norm regularized regression that we�n � 2 m l1

use, although there is no theoretical proof yet, it has been sug-
gested that, for the ratio n:m, . 23 Under the assumptionn � m
that phase-known haplotypes are given as input data, M chro-

mosomes correspond to diploid individuals (i.e., );M/2 m p M/2
we therefore choose as the maximum number of distinctM/2
haplotypes that can be accommodated in the regularized regres-
sion model.

Performing the Association Test in a Variable-Sized Window

For a given , suppose there are J distinct haplo-s � {1, … ,L � 1}
types in the variable-sized window . In this article, we takesQ

account of the dependency and complementariness among the
J haplotypes and test them in one model. We make use of the
shrinkage techniques in the regression to deal with the problem
of the many degrees of freedom. The main reason for turning to
regression is its fast estimation of coefficients. Use of regression
models instead of logistic regression models is not uncommon
in practice.24,25 To work with a regression model, we introduce a
new variable for each , and the former can be interpreted as∗y yi i

a true underlying continuous phenotype represented by the latter.
In our experiments, when , and when∗ ∗y p 1 y p 1 y p �1i i i

.y p 0i

There are two steps in performing the association test in a var-
iable-sized window. In step 1, we estimate the haplotype effect
differences for the J haplotypes, using -norm regularized re-l1

gression, which is described below. Those haplotypes whose es-
timated effect difference (with respect to the reference haplotype)
is not equal to zero are taken as informative haplotypes. If there
are no informative haplotypes, we claim that there is no asso-
ciation between the haplotypes in the window and the disease
of interest; otherwise, we proceed to the next step. In step 2, we
test the statistical significance of the informative haplotypes se-
lected in the first step by the F test. Below we describe how to
make use of the generalized degrees of freedom (GDF) to correct
the selection bias in the first step and to calculate an unbiased P
value for association in each variable-sized window.

l1-Norm Regularized Regression

Suppose there are J distinct haplotypes in the variable-sized win-
dow . Let , and , be a {0,1} variable,s sQ D i p 1, … ,M j p 1, … ,Jij

representing whether chromosome i contains haplotype j. The
regularized regression model is parameterized with sb p

, where is the haplotype effect of a reference hap-s s s s{b ,b … ,b } b0 1 J 0

lotype, which is one of the J haplotypes, but is unknown before
the fitting of the model; is the haplotype effect difference be-sbj

tween the jth haplotype and the reference haplotype. Unlike or-
dinary regression that aims to minimize the sum of squared error
( ) between and its estimation,M J∗ s s s 2 ∗SSE p � [y � (b �� D b )] ys i 0 ij jip1 jp1

the regularized regression has the joint objective of using the
simplest model to obtain the least squared error. There is a hy-
perparameter that makes a trade-off between these two con-as

tradicting objectives. The -norm regularized regression usesl1

as the model-complexity measure and estimates byJ s s� Fb F bjjp1

minimizing . The second term in the objectiveJ sSSE � a � Fb Fs s jjp1

function forces the -norm regularized regression to use as smalll1

a number of haplotypes as possible to predict accurately.26 For∗y
a known , can be found using quadratic programming tech-sa bs

niques that are computationally intensive; LARS23 was proposed
to estimate in time similar to that of standard linear regressionsb

for a series of a. The model obtained with a given is calledas

“ -indexed,” and its corresponding parameters are representedas

as . We decided on the best value of (equivalently, thesb (a ) as s
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best value of ) by the adaptive model-selection method,27 whichsb

was observed to perform better than cross-validation methods.28

A central concept in the adaptive model-selection method27 is
the GDF.29 For a general modeling procedure, such as regularized
regression, which involves variable selection, the GDF is intro-
duced to correct selection bias and to accurately measure the
complexity of the model obtained. Those who are interested in
the details of the GDF can refer to the work of Ye.29 The adaptive
model-selection method generalizes Akaike information criterion
(AIC), one of the model selection criteria, to the extended AIC,
where the degrees of freedom in AIC are replaced with the GDF.
For the computational details of the GDF and the extended AIC,
please see appendix A. To decide on the best value of , theas

adaptive model-selection method chooses the a that minimizes
the extended AIC. Denote the chosen as .˜a as s

Using the GDF to Calculate Unbiased P Values

The estimated haplotype-effect differences are now ,s ˜b (a ) j pj s

. Those haplotypes whose values are not equal to zeros ˜1, … ,J b (a )j s

are selected as informative haplotypes. We test the disease-hap-
lotype association by testing the statistical significance of the
informative haplotypes, using the F test. Under the null hypoth-
esis of no association between the disease and the haplotypes in
the variable-sized window, all the haplotypes have no effect dif-
ference with respect to the reference haplotype. Hence, the sum
of squared error of the null model is ,M ∗ 2¯SSE (H ) p � (y � y)s 0 iip1

where . Under the alternative hypothesis, all theM ∗ȳ p 1/M(� y )iip1

noninformative haplotypes have the same effect as the reference
haplotype, and all the informative haplotypes have different ef-
fect differences. Under the assumption that the indices of the
informative haplotypes are , the sum of squared error oft , … ,t1 G

the alternative model is , whereM ∗ 2˜ ˜SSE (H ) p � (y � y ) y ps 1 i i iip1

. The alternative model is -indexed, and weGs s s˜ ˜ ˜b (a ) �� D b (a ) a0 s it t s sjp1 j j

denote its GDF as . The statistic30 to test the significance˜gdf(a )s
of the contributions of the informative haplotypes is

˜[SSE (H ) � SSE (H )]/[gdf(a ) � 1]s 0 s 1 s ,
˜SSE (H )/[M � gdf(a )]s 1 s

which follows the F-distribution asymptotically under the null
hypothesis, with the first degrees of freedom being ˜gdf(a ) � 1s

and the second degrees of freedom being .˜M � gdf(a )s
There are only G nonzero coefficients and one intercept in the

alternative model; however, when the test statistic is calculated,
the degrees of freedom of the alternative model are taken to be

, which is usually . If we use as the degrees˜gdf(a ) 1 G � 1 G � 1s

of freedom of the alternative model, the resulting P value will be
biased downward. The GDF is used to correct the selection bias
in the regularized regression29; thus, the P value is called “unbi-
ased” because it is calculated on the basis of the GDF of the model.

Simulation Data

All the simulation data were generated using the ms program.31

First, 4,000 haplotypes were generated using the following pa-
rameters: region size of 300 kb; effective population size of 10,000;
recombination rate per site per generation of 10�9 or 10�7, and
300 SNPs within the region. Then, 2,000 individual samples were
generated by randomly pairing the haplotypes. One or two SNPs
with minor-allele frequency (MAF) of ∼0.05 were randomly se-
lected as the disease-causing variant(s) from the region (see ex-

planation below about the disease model). Under the assumption
of a multiplicative model of disease inheritance and an equal case:
control ratio, the phenotype of each individual was simulated
using the logistic regression model (appendix B) and an odds ratio
for the heterozygous genotypes at the causal SNP(s) in the range
1.2–2.5. After generation of the phenotypes, the genotypic in-
formation of the selected causal SNP(s) was removed from the
simulated haplotypes before statistical analysis.

We simulated two types of data on the basis of two different
disease models. In the first model, there is only one disease-caus-
ing SNP within the simulated region. In the second model, there
are two disease-causing SNPs within the simulated region that
act jointly (not interactively). When selecting the two risk SNPs
within a region, in addition to the requirement that both SNPs
have an MAF of ∼0.05, the pairwise between the two risk SNPs2r
is required to be !0.1, and they are separated by as many SNPs
as possible. The odds ratios for the two causal SNPs are set to be
the same. Detailed simulation procedures are described in ap-
pendix B.

The decay of LD, seen in both D′ and , in our simulated data2r
(after filtering out the SNPs with MAF !0.03) was compared with
that in the HapMap project.34 The overall patterns of our simu-
lated data (data not shown) are similar to those from the HapMap
project.34 Whereas the simulation data with a low recombination
rate of 10�9 shows overall stronger LD and a slower LD decay than
that of the HapMap data, the simulation data with a high recom-
bination rate of 10�7 shows overall weaker LD and a faster LD
decay than that of the HapMap data. Given the fact that the
average recombination rate across 500 kb in the human ENCODE
regions ranges from 0.19 to 1.25 cM,34 the rate of 10�9 represents
the low end of recombination rates in the human genome,
whereas the rate of 10�7 represents a high recombination rate
observed in some parts (hot spots) of the human genome. It is
therefore expected that reasonable differences of LD pattern will
be seen between our simulation data and the HapMap data, and
our simulation data are suitable for evaluating the performance
of our method for analyzing real human population data.

Experimental Data

Chinese subjects who received a diagnosis of idiopathic Parkinson
disease from neurologists at two major movement disorder cen-
ters in Singapore (Singapore General Hospital and National Neu-
roscience Institute) were included in the study. The diagnosis of
Parkinson disease was made in accordance with the diagnostic
criteria of the United Kingdom Parkinson Disease Society Brain
Bank. Healthy controls of similar age and matching sex and race
were recruited at the same clinics. Institutional ethics committees
approved the study, and informed consent was obtained from all
study subjects.

Results

We compared the performance of our method of variable-
sized sliding windows by use of regularized regression (re-
ferred to in the table and figures as “VSSWRR”) with three
other methods for association analyses: allele-basedsingle-
locus test (hereafter referred to as “SINGLE”), cladis-2x

tic analysis of haplotypes21 (hereafter referred to as
“CLADHC”), and association mapping by use of variable-
length Markov chains18 (hereafter referred to as “VLMC”).
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Figure 1. Comparison between methods of the detection power
for the first type of disease model, in which disease status depends
on one disease-causing SNP. Power is calculated under the as-
sumption of a 5% experimentwise significance level, with Bon-
ferroni correction for multiple testing. The recombination rate per
site per generation in the simulated region is set to 10�9.

SINGLE is used as a comparison baseline, CLADHC is used
as a benchmark of haplotype analyses in a fixed-sized slid-
ing-window framework; and VLMC is used as a bench-
mark of haplotype tests that are in the haplotype-cluster-
ing framework and make use of local LD pattern. Since
CLADHC adopts a fixed window size, we analyze each
replicate datum by using window sizes of 4–10 separately
and present the highest power for each odds ratio.
Throughout the article, we used Bonferroni correction to
adjust for multiple testing (multiple sliding windows that
start at different positions for our method, multiple hap-
lotype partitions and multiple sliding windows for
CLADHC, multiple single-SNP tests for SINGLE, and mul-
tiple haplotype cluster tests for VLMC).

Analysis of Simulated Data

For each of the two disease models, with a recombination
rate per site per generation of 10�9, the simulation pro-
cedure in appendix B was invoked 100 times to generate
100 replicate data for each of the odds ratios: 1.2, 1.4, 1.6,
1.8, 2, and 2.5. To mimic a typical genetic association
study, we first filtered out rare SNPs (MAF !0.03) and then
identified tagging SNPs in 90 randomly selected individual
samples (180 haplotypes), using a haplotype value of2R
0.85.32 On average, 18 SNPs remained after filtering by
MAF and haplotype . The phenotypes and tagging-SNP2R
haplotypes of 2,000 simulated cases and simulated con-
trols were subsequently used in genetic association
analyses.

The performance comparisons among the four methods
were done in two ways. First, the performance was eval-
uated in terms of the detection power—that is, the rate
of declaring association on the basis of the smallest ad-
justed P value at a significance level of .05 within a region.
Second, the performance was evaluated by calculating the
type I error rate for each method, which was done by
randomly permuting the disease status for each datum and
then averaging over the disease models.

Our method consistently outperformed the other three
methods in terms of the detection power at various odds
ratios under the two different disease models. Under the
single-disease-allele model (fig. 1), our method provides
the best detection power among the four methods, al-
though the difference between our method and VLMC
(the second best) is moderate. At very low odds ratios (1.2–
1.4), all the methods have poor power of detection, which
is expected, given the low population frequency of the
simulated disease allele and the limited size of the simu-
lated sample of 1,000 cases and 1,000 controls. For mod-
erate odds ratios (1.8–2.5), both our method and VLMC
provide significantly higher detection power than do the
CLADHC and SINGLE. Under the model of two disease
alleles, for a moderate odds ratio (1.6–2), our method con-
sistently provides 10%–20% more power than do the other
three methods (fig. 2). All three haplotype-based methods
perform better than SINGLE for odds ratios of 1.8–2.5;

however, they do not perform better for low odds ratios—
in this case, all the methods have poor detection power.

To further investigate the performance of each method,
the haplotype complexity was increased by increasing the
recombination rate per site per generation from 10�9 (fig.
2) to 10�7 (fig. 3) for the model of two disease alleles. With
a recombination rate of 10�7, LD strength within the re-
gion under study was greatly reduced, and the haplotype
complexity within the region therefore increased signifi-
cantly. Specifically, for each of the 100 simulated data rep-
licates, we calculated the number of unique haplotypes of
length from 2 to (under the assumption thatL � s � 1
there are L SNPs) for each possible window beginning at
position s. The average number of unique haplotypes over
all s in the 100 simulation data increases from 94 to 1,760.
The percentage of sliding windows that have 12,000
unique haplotypes of different lengths increases from 0%
to 21%. For the region associated with high haplotype
complexity (fig. 3), our method provides much better de-
tection power than that of the other three methods, and
∼30%–50% more power than that of CLADHC, the sec-
ond-best method. As the second-best method, CLADHC
still performs significantly better than SINGLE and VLMC
for odds ratios 1.8–2.5. Interestingly, VLMC, which is the
second-best method for the simulated data with low hap-
lotype complexity (a recombination rate per site per gen-
eration of 10�9), has the worst performance, with very
poor detection power even for the high odds ratio of 2.5.
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Figure 2. Comparison between methods of the detection power
for the second type of disease model, in which disease status
depends on two disease-causing SNPs in the observed region. The
power is calculated under the assumption of a 5% experimentwise
significance level, with Bonferroni correction for multiple testing.
The recombination rate per site per generation in the simulated
region is set to 10�9.

Figure 3. Comparison between methods of the detection power
for the second type of disease model, in which disease status
depends on two disease-causing SNPs in the observed region. The
power is calculated under the assumption of a 5% experimentwise
significance level, with Bonferroni correction for multiple testing.
The recombination rate per site per generation in the simulated
region is set to 10�7.

Overall, the improved performance of our method com-
pared with the other three methods is more significant in
the region with high recombination rate and thus with
high haplotype complexity.

We also compared the type I error rates of the four meth-
ods (table 1). Our method has the highest type I error rate;
however, it is still below the nominal value of 5%, and
the difference in the type I error rates between our method
and the other three methods is moderate. This indicates
that the significant improvement of our method in terms
of detection power does not lead to a significant increase
in the type I error rate or false-positive rate.

Analysis of Experimental Data

We also evaluated the performance of the four methods
by using experimental data generated in a genetic asso-
ciation study of Parkinson disease. The data include the
genotypes of 96 SNPs (from a single candidate gene) ob-
tained from 211 cases and 215 healthy controls. The most
likely haplotype pair for each individual was inferred by
PLEM.33 Of 95 sliding windows, 81% have 1426 (the num-
ber of total samples) unique haplotypes of different
lengths. Among the four methods, only our method de-
tected a significant association at the 5% experimentwise
significance level after Bonferroni correction for multiple
testing. The sliding window (see the “Methods” section31Q

for description), beginning with SNP 31, had the smallest

raw P value of .000285, which was significant after Bon-
ferroni correction (fig. 4). The analysis was also performed
using a permutation method for multiple-testing correc-
tion, and the conclusion remained the same. The smallest
permutation-corrected P value of our method (for 1,000
permutations) was 0.019, whereas no significant evidence
was detected by the other three methods (SINGLE and
VLMC used 1,000 permutations, whereas CLADHC used
10,000 permutations because it involves two-level mul-
tiple testing). Within the sliding window of , the long-31Q

est informative haplotype selected by the regularized re-
gression has length 18; hence, the identified critical region
of the putative risk allele(s) was from SNP 31 to SNP 48.
To further evaluate the significance of this finding, we
performed 100 cross-validation analyses. In each cross-
validation, we randomly selected 174 cases and 176 con-
trols from the whole sample. Since the sample size of the
cross-validation analysis was only 350, the P values ob-
tained were inevitably nonsignificant after multiple-win-
dow adjustment. However, of the 100 cross-validation
analyses, 58 mapped the critical region of the putative risk
alleles (defined by the longest informative haplotype) to
the interval between SNPs 29 and 49, and 15 analyses
mapped the critical region to the interval between SNPs
16 and 34, which overlapped with the original critical
region determined in the whole sample. This suggested
that the identified critical region of the putative risk allele
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Table 1. Error Rates for
Detection of Disease
Association at the 5%
Experimentwise Significance
Level, Averaged over the
Two Disease Models and
Recombination Rates

Method Type I Error Rate

VSSWRR .032
SINGLE .031
CLADHC .011
VLMC .031

Figure 4. The �log10 of raw P values obtained by our method
for a single candidate gene for Parkinson disease. A total of 96
SNPs were typed for 211 cases and 216 controls. The horizontal
line is the significance threshold obtained by Bonferroni correction
at the experimentwise significance level of 5%. The X-axis shows
the beginning position of each sliding window.

was unlikely to be caused by sampling bias, although fur-
ther validation analyses are warranted.

Discussion

In this article, we have proposed a haplotype-based
method that works with variable-sized sliding windows to
detect disease-haplotype associations for population-
based case-control studies. For each variable-sized sliding
window, the maximum window size is determined on the
basis of local haplotype diversity as well as sample size.
By doing a systematic performance evaluation under dif-
ferent disease models, we have shown that our method
consistently outperforms the commonly used single-SNP–
based association test and two haplotype association
methods that have been demonstrated to be among the
most effective methods to date. The outperformance of
our method compared with the other three methods be-
comes much more significant when the region under
study shows low LD. When the region under study ex-
hibits extensive LD, our method provides good detection
power (160%) for disease alleles with moderate effects
(odds ratio �1.8) and a low population frequency of 5%
and provides almost full power for the model of two dis-
ease alleles with odds ratio of 2.5 and a population allele
frequency of 5%. Importantly, the improvement of de-
tection power by our method does not lead to a significant
increase in type I error rate, and the overall rate is well
below the nominal value of 5%. Meanwhile, it is worth
pointing out that, when the region under study has rel-
atively low LD, the detection power of our method is still
not optimal (!40%), although it performs much better
than the other three methods. So, there is still space for
further improvement on our method.

To our knowledge, our method is the first application
of GDF and -norm regularized regression to haplotypel1

association analyses. A major challenge for haplotype as-
sociation approaches is the large number of haplotypes to
be tested, and the issue becomes even more challenging
when an exhaustive analysis of haplotypes is performed.
It is expected that, in an exhaustive analysis of haplotypes
within a region, many haplotypes have the same prefix
and are thus highly correlated (e.g., haplotypes 122, 1221,

and 12212, all beginning with SNP s, are highly corre-
lated). Meanwhile, because haplotypes may have comple-
mentary effects, considering one haplotype at a time will
weaken association strength. A series of 1-df tests, followed
by permutation-based multiple-testing adjustment, can
take into account the dependency among the tests but
ignores the complementariness among haplotypes. In
contrast, the conventional single, multiple-df global test
can take into account the complementariness but fails to
consider the dependency among haplotypes, because it
treats each haplotype as a totally independent identity.
To account for the dependency among haplotypes, the
penalized log-likelihood method22 introduced a penalty
term to force similar haplotypes to have similar estimated
effects. The regularized regression we adopted in this ar-
ticle behaves differently. The dependency among haplo-
types is evaluated on the basis of disease status—that is,
two haplotypes are considered to be highly redundant if
the association of one haplotype with the disease is not
much affected by consideration of the two haplotypes to-
gether. The regularized regression shrinks the effects of
redundant haplotypes to zero, so that the effective degrees
of freedom of the model are much smaller than the given
sample size. Thanks to the fast estimation of coefficients
in -norm regularized regression, the best model (i.e., thel1

best trade-off parameter) can be found by the adaptive
model-selection method,27 which was observed to be bet-
ter than cross-validation methods.28 By taking into ac-
count both the redundancy and the complementariness
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among haplotypes and by using the GDF technique, our
regularized regression method provides a more efficient
and effective way to analyze a large number of haplotypes
in association test than performance of a series of 1-df
tests or a single multiple-df global test.

For the first time, we implement a procedure in which
the maximum window size of a sliding-window analysis
is determined on the basis of local haplotype diversity and
sample size. It is well known that, in a linear model, the
number of covariates that can be accurately estimated is
constrained by the number of observations or samples,
although the method of constraining may be different for
different model-building techniques. Given a fixed sample
size, to ensure an accurate estimation of the model param-
eters, the number of covariates or unique haplotypes that
can be considered should be limited. Unconstrained inclu-
sion of a large number of haplotypes in association test will
not increase but, instead, will decrease the detection power.

Our approach has better performance than CLADHC,
which has been shown to be one of the most powerful
approaches for haplotype analysis to date. The improve-
ment of our approach over CLADHC can be reflected in
several ways. First, our approach is based on variable slid-
ing-window size, whereas CLADHC employs a fixed win-
dow size. As pointed out above, the employment of a fixed
window size reduces the power for detecting risk haplo-
type(s). In our performance evaluation, multiple fixed
window sizes were explored in CLADHC analysis, which
is what is usually done in practice. The results of CLADHC
should have undergone adjustment for multiple window
sizes, and the performance of CLADHC would have been
worse. Second, when the number of haplotypes in a win-
dow is large, CLADHC needs to first merge rare haplotypes
into one category before hierarchical clustering is per-
formed. In contrast, our method considers both common
and rare haplotypes directly in the regularized regression
model and can include rare haplotypes in the final model
if they are statistically significantly associated with the
disease of interest. Third, the haplotype partition in
CLADHC is obtained by hierarchical clustering, which is
greedy in nature. Hence, it is likely that the “best” hap-
lotype partition identified is only suboptimal among all
possible ones. To the contrary, the regularized sum of
squared error that serves as the objective function in the
regularized regression is globally minimized. Of course,
CLADHC has its own advantage in terms of mapping dis-
ease susceptibility loci, because its hierarchical clustering
is based on haplotype evolution to some extent. Another
comparison is of computational efficiency. Within a slid-
ing window, CLADHC tries different haplotype partitions
and thus needs to adjust for multiple testing (multiple
haplotype partitions) within a window, which is usually
done by conservative Bonferroni correction. Alternatively,
the adjustment can be done by a permutation approach,
but it requires at least 1,000 permutations to get accurate
adjusted P values, which is computationally intensive. Our
method tests the association between the disease and all

the haplotypes within a window in one model; hence,
there is no need to do multiple-testing adjustment within
a window. However, to calculate unbiased P values, our
method does require a parametric bootstrapping proce-
dure to estimate the GDF of the model built by the reg-
ularized regression. Fortunately, 100 bootstraps are usually
enough to accurately estimate the GDF, which is much
less computationally intensive than the permutation
method for multiple-testing adjustment. In summary, our
method outperforms CLADHC by enjoying the flexibility
of window sizes and the effectiveness of managing a large
number of both common and rare haplotypes.

Another unique feature of our method is that it takes
into account the observed haplotype associations with the
phenotypes of interest when the regression model is being
built for testing. In contrast, CLADHC and VLMC first
group haplotypes on the basis of haplotype similarity and
then perform association tests. So, both of those methods
do not consider the observed haplotype associations with
phenotypes when grouping the haplotypes, although they
take the haplotype evolution into account to some extent.
Modeling haplotype evolution in association tests may
give an easier biological interpretation of association evi-
dence; however, a problem may be encountered when a
region is analyzed for which either there is more than one
disease-risk allele or both risk and protective alleles exist
and these alleles have different evolutionary histories. The
haplotype clustering–based method may also encounter a
problem when the region under study exhibits a complex
LD pattern and thus contains a large number of unique
haplotypes. For example, the analyses of our simulation
data indicated that VLMC grouped a larger number of
unique haplotypes into a smaller number of haplotype
clusters (merging edges in the fitted graph) in the region
with a high recombination rate than in the region with
a low recombination rate (data not shown). When a region
with a large number of unique haplotypes is analyzed, the
merging method of VLMC can result in a limited number
of merging edges or haplotype clusters for testing, but the
resulting haplotype clusters will become more heteroge-
neous and thus may fail to capture the true association
between particular haplotype(s) and risk variant(s). This
may explain, at least partially, the poor performance of
VLMC under a high recombination rate. Therefore, the se-
quential nature (unsupervised haplotype groupingfollowed
by association testing) of the existing haplotype clustering–
based methods may be another reason why these methods
have lower detection power than our method does.

There are, however, some limitations of our simulation
analysis. First, our simulated data were constructed with-
out the modeling of recombination hotspots. However,
we did simulate the data by assuming a high or low re-
combination rate per site per generation (10�7 or 10�9).
Given the observed range of the average recombination
rate (0.19–1.25 cM) across 500 kb in the human ENCODE
regions,34 the rate of 10�9 represents the low end of re-
combination rates observed in the human genome,
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whereas 10�7 represents a high recombination rate ob-
served in some parts (hotspots) of the human genome.
The performance of our method in a region with recom-
bination hotspots (a mixture of 10�7 and 10�9 recombi-
nation rates) is expected to be intermediate between the
performances achieved with assumptions of low and high
recombination rates across the whole region.

Second, we only simulated disease alleles with an MAF
of 0.05. It is well known that the MAF of a disease allele
has a major impact on the relative power of haplotype
and single-marker methods. If there is only one common
risk allele (MAF 10.05) within a region, it is likely that a
single-marker test will have similar detection power as that
of our haplotype analysis. However, when there is more
than one common risk allele within a region, our method
will have a better power than that of a single-marker anal-
ysis because association evidence from different haplo-
types (associated with different risk alleles) may be built
into a single regression model for testing in our method.
For detecting disease-risk alleles with low MAFs, our
method is likely to have even higher detection power than
that of single-marker analyses and haplotype clustering–
based approaches because our method includes directly
the common and rare haplotypes in the regression model.
By simulating a disease allele with low MAF and moderate
effect, we explored a rather difficult scenario for detecting
a risk allele to evaluate the power of our method.

Third, we directly simulated case and control samples
instead of first simulating a source population and then
randomly selecting cases and controls. Typical genetic as-
sociation analyses are performed using cases and controls,
often of similar numbers, that represent a very small pro-
portion of the source population. Under the assumption
of a relatively large sample size and a multifactorial disease
model in which disease phenotype is influenced by mul-
tiple factors, each with a moderate effect, the random sam-
pling of cases and controls from the source population
should not cause a significant difference in LD pattern
between the cases and the controls or between the selected
samples and the source population. In our simulation data
analysis, instead of simulating a source population and
then a random sampling process, we directly simulated
equal numbers of cases and controls that have a similar
LD pattern and reflect the simulated disease model with
a low disease-risk allele frequency and a moderate relative
risk. By doing so, we eliminated the impact of a random
sampling process. But, given the relatively large number
of our simulated samples, they should be suitable for dem-
onstrating the applicability of our method to real data.

Fourth, the use of Bonferroni correction for multiple-
testing adjustment may impact the result of the power
comparison between our method and the three competing
methods, because Bonferroni correction overly penalizes
a method that involves highly correlated tests. If one
method involves a larger number of highly correlated
tests, it will be overly penalized and therefore will appear
to have a lower power than what would have been

achieved if a more appropriate correction method (such
as permutation-based correction) were used. Given that
the sliding windows of our method are highly overlapping
for adjacent SNPs, our method and SINGLE probably suffer
a similar penalty from Bonferroni correction. As for
VLMC, it is not clear whether the merging edges that are
used for association testing suffer more from Bonferroni
correction than do our variable-sized sliding windows;
however, the type I error rates of VLMC and our method
are very similar, suggesting that they are penalized to the
similar degree. CLADHC may suffer more penalties than
the other three methods do, because it needs to adjust for
two-level multiple testing (one for multiple haplotype par-
titions within a window and the other for multiple win-
dows). However, this could not be the sole reason why
our method performed better than CLADHC, as we dis-
cussed above. The fact that the use of permutation tests
in the analysis of the experimental data leads to the same
conclusion as the use of Bonferroni correction suggests
that our method might still have better power than the
other three methods when permutation test is used for
multiple-testing correction.

To mimic a typical genetic association study, our anal-
ysis of the simulated data was preceded by removal of rare
variants and use of a tagging-SNP strategy; however, our
regularized regression–based method can also be per-
formed by consideration of all the typed SNPs. On one
hand, including all the SNPs allows the full usage of ge-
netic information and thus may increase the significance
of the test within a sliding window. On the other hand,
it also increases the total number of sliding windows and
thus the total number of tests that need to be adjusted
for. Currently, there is not a good solution to finding an
optimal trade-off point between the maximization of ge-
netic-information usage and the minimization of multi-
ple-testing adjustment, because such a point seems to be
different from case to case. For example, in our analysis
of the candidate gene for Parkinson disease, use of all 96
typed SNPs allowed us to identify a significant association
at the adjusted significance level of 0.05, whereas use of
15 tagging SNPs failed. One possible solution might be the
application of the regularized regression to tests of the
significance of all the informative haplotypes selected in
all the sliding windows.

Our method can also be easily generalized to analysis
of phase-unknown genotype data. For example, for phase-
known haplotype data, in the regularized regression issDij

an indicator of whether chromosome i contains haplotype
j; for phase-unknown genotype data, can be set to thesDij

expected dosage of haplotype j in subject i.35,36 In partic-
ular, can be the weighted average number of copies ofsDij

haplotype j in the haplotype pairs that are compatible
with the genotype of subject i, with the weights equal to
the estimated haplotype frequencies. However, the si-
multaneous estimation of the haplotype frequencies and
the haplotype effects in the regularized regression, as is
done in a standard logistic regression,37 needs further re-
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search. Our method works in a regression framework;
hence, other risk factors can be incorporated as covariates
in the regression model.

Our method has the potential to be applied to ge-
nomewide haplotype analysis, a very challenging task at
the moment. Given the greatly varying LD patterns across
the human genome, our variable-sized sliding-window
method has a clear advantage over the methods that as-
sume a fixed sliding-window size. Our method also has
an advantage over the exhaustive haplotype analysis in a
genomewide scan. In the genomewide analysis, the max-
imum window size of the exhaustive analysis can be as
big as the whole chromosome. Consequently, the total
number of unique haplotypes will be enormous, leading
to a serious drain of power for detection. Our method
overcomes this problem by determining the maximum
window size on the basis of the local haplotype diversity
and the sample size. In this study, we used the simple
Bonferroni correction for the multiple-testing adjustment
for different sliding windows, which is overly conserva-
tive, especially for a whole-genome analysis. Permutation-
based adjustment is one alternative to multiple-testing ad-
justment. However, on the basis of our experience from
this study, we think that the GDF is more favorable. There-
fore, one future development will be to explore the ap-
plication of the regularized regression and GDF to testing,
in one model, the significance of all the informative hap-
lotypes selected in all the sliding windows, for which a
smaller number of parametric bootstrappings, rather than
a large number of permutations, are performed.

The method for variable-sized sliding windows with use
of regularized regression, coded in R, is available on re-
quest from the corresponding author.
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Appendix A
In classical linear models, the number of covariates and

the covariate identities are fixed, even if different observed
responses are given; hence, the degrees of freedom are
equal to the number of covariates. However, situations are
different in the regularized regression. With a fixed but
given slightly different observed responses, the regularized
regression comes up with different values; as a result,sb (a)
the number of nonzero coefficients and the identities of
the nonzero coefficients may be quite different. In other
words, the a-indexed model found by the regularized re-

gression may be instable, sensitive to small changes in the
observed responses. Hence, the number of nonzero co-
efficients cannot accurately measure the model complex-
ity any more—that is, the degrees of freedom of the a-
indexed model are no longer equal to the number of
nonzero coefficients in the model. For a general modeling
procedure, such as the regularized regression, which in-
volves variable selection, the GDF are introduced29 to cor-
rect selection bias and to accurately measure the com-
plexity of the model obtained. The GDF of a model is
defined as the average sensitivity of the fitted values to a
small change in the observed values. The parametric boot-
strapping method proposed by Ye29 estimated the GDF by
perturbing the observed response a little bit in some way,
estimating the response by use of perturbed data, and
computing the ratio of the estimated response to the per-
turbation rate. Usually, 100 bootstrapping is enough to
accurately estimate GDF; hence, it is relatively efficient.

Suppose the observed value , , is modeled asy i p 1,…,ni

, where is the expectation of and is a Gaussianm � � m y �i i i

white noise with variance . An estimate for can be2 2 2j s j

obtained by an ordinary regression. Given a modeling pro-
cedure , GDF(M), the GDF of the modeling pro-M:y r u
cedure M, can be estimated as follows:

1. For , first generate ,2t p 1,…,T d ∼ normal(0,s ) i pti

. Then, evaluate on the basis of theˆ1,…,n u(y � d )t
modeling procedure M.

2. Calculate as the regression slope fromMˆ ˆh u (y �i i

.Mˆd ) p c � d ht ti i

3. n MˆGDF(M) p � h .iip1

The estimation of GDF is relatively insensitive to the
choice of s for .s � [0.5j,j]

Given GDF(M), the extended AIC is defined as
.M 2 2ˆ� (y � m ) � 2 # GDF(M) # ji iip1

Appendix B
The procedure that we used to generate the simulation

data is as follows.

1. Generate genotype data.
(a) Invoke the ms program31 to generate 4,000 chro-

mosomes, with the required invoking parameters.
(b) Form genotype data by randomly pairing the

haplotypes.
2. Generate the phenotype (disease status).

(a) Randomly select the required number of disease-
causing SNPs whose MAF is approximately the
desired MAF.

(b) Generate the disease status based on the geno-
types of the causal SNPs and the disease model
by use of the following logistic regression model:

ILogit[Pr (DFgenotype)] p � log (OR) # x �iip1

, where I is the number of causal SNPs,constant
OR is the specified odds ratio for the heterozy-
gous genotype of the causal SNP, is the 0-1-2xi

genotype coding for the ith causal SNP, and
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“constant” is a constant that renders the re-
quired case:control ratio.

3. Remove the genomic information for the selected
causal SNPs from the simulated haplotypes.
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